A Provably Secure Composite Diffie-Hellman Scheme
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Abstract. We suggest a modification of the Diffie-Hellman key distribution scheme with composite
modulus and prove that this modification is secure under the general integer factoring intractability
assumption. In this scheme, the modulus is the product of two arbitrary distinct primes. We show
that if there exists a probabilistic polynomial-time algorithm that breaks the scheme with nonnegligible
probability, then there also exists a probabilistic polynomial-time algorithm for factoring the modulus
with nonnegligible probability. This improves the results obtained by Shmuely and McCurley [McC].
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1. Introduction

The main problem in the theory of the Diffie-Hellman key distribution scheme [DH] is proving its security
under some standard cryptographic assumption. For the original Diffie-Hellman scheme (with prime
modulus), den Boer [B] and Maurer [Mau] proved the security under some assumptions apparently stronger
than the general discrete logarithm intractability assumption. Note that Maurer’s result is applicable not
only to the original Diffie-Hellman scheme, but also to some its generalizations.

Shmuely [S] and McCurley [McC] considered variations of the Composite Diffie-Hellman scheme, i.e.,
the Diffie-Hellman scheme with the modulus n which is the product of two distinct primes. They proved
(see [McC]) that any (probabilistic) algorithm 2 breaking the scheme with nonzero probability can be
used to construct a probabilistic algorithm % for factoring the modulus n with probability at least 1/2.
However, Shmuely’s result (in the form cited in [McC]) does not allow us to state that if 2 has polynomial
running time and nonnegligible probability of success, then 2B also runs in polynomial time. This is only
true if, e.g., the prime factors of the modulus n have a certain special form. McCurley’s result [McC]
guarantees polynomial running time for 9B provided that 2 runs in polynomial time and has nonnegligible
probability of success. But in the McCurley scheme, the prime factors of the modulus n have to be chosen
in some special way. This means that the security of this scheme is based on an apparently stronger
assumption than the general factoring intractability assumption, namely, on the intractability assumption
for factoring products of two distinct primes chosen in this way.

This paper suggests another modification of the Composite Diffie-Hellman key distribution scheme.
The modulus n in our scheme is the product of two arbitrary distinct primes. The base in this scheme is
taken uniformly at random from the set of all elements of odd order in Z7. Both the modulus and the base
are chosen by a trusted authority. Our main result is that if there exists a probabilistic algorithm 2 that
breaks our scheme with probability at least £(n), then there also exists a probabilistic algorithm 9B for
factoring the modulus with probability at least se(n), where s is an absolute positive constant. Moreover,
if 2 runs in polynomial time, then B also runs in polynomial time. The probability of success of B can
be increased (in particular, to 1/2, as in the results of Shmuely and McCurley) by a standard iterating
procedure. As a corollary, we prove the security of the suggested scheme under the general factoring
intractability assumption. To our knowledge, this is the first proving the security of the Diffie-Hellman
scheme under some standard cryptographic assumption. The proof of our result develops the proofs of
results of Shmuely and McCurley [McC].

It should be noted that the randomness of the base is essential for the proof of our result, whereas in
the McCurley scheme, the base is fixed. Note also that in our scheme, all algorithms (including initializing
performed by the trusted authority) are efficient.

In Sec. 2, we give the notation used in this paper. Section 3 describes our scheme. In Sec. 4, we state
the main results of the paper. Section 5 contains some auxiliary lemmas which are used in the proof of the
main theorem. Finally, in Sec. 6, we define some probability distributions and prove the main theorem.

2. Notation

In this paper, we use the following notation:
¢ log denotes the logarithm to the base 2;



[z] denotes the integral part of a real number z;

pln(z) denotes some function of the form cz?, where ¢, d are real positive constants (in different

places, pln may denote different functions);

N denotes the set {1,2,...} of all positive integers;

(a) denotes the (cyclic) group generated by the element a;

ord a denotes the order of the element a of a group;

d(n, a) denotes [n/ orda], where n € N and a is an element of finite order of a group;

Z, denotes the set {0,1,...,n — 1} usually considered as a ring with respect to addition and

multiplication modulo n (n € N);

e 7 denotes the set of all numbers in Z,, which are coprime to n, i.e., the group of all units in the
ring Zy;

e H, denotes the set (subgroup) of all elements of odd order in Z};

¢ 10 denotes the string of I binary ones.

The notation e €x E means that e is an uniformly distributed random element of the finite set E. We
assume that these random elements are mutually independent.

All our results are stated for the uniform model of computation, i.e., by the word “algorithm”, we mean
a probabilistic Turing machine.

3. The Scheme

Let us describe our key distribution scheme. Denote the security parameter as ! (I € N). We assume that
there exists a polynomial-time algorithm & that, given 1¢), outputs a two-element set {p, ¢} of primes such
that log p, loggq > pln(l). Our scheme requires a trusted authority which is responsible for maintaining a
certified public directory.

To initialize the scheme, the trusted authority runs the following algorithm:

(1) generate {p,q} = & (1)) and compute the modulus n = pg;

(2) compute a and 3 such that p — 1 = 2%p’ and ¢ — 1 = 28¢’, where p' and ¢’ are odd;

(3) choose a €x {1,...,p—1},b€x {1,...,q— 1} and compute (unique) g € Z? (the base) such that
g =a®> (mod p) and g = b2’ (mod q) (it is easily seen that a®” mod p €5 H,, 2’ mod ¢ €y H,
and hence, g €5 H,);

(4) make n and g public by placing them in the certified public directory (all other results of random
choices and computations must be secret).

Any user (say, A) starts with taking n and g from the certified public directory, selecting z, €x Zn,
computing y, = ¢*4 mod n, and sending it to the trusted authority, keeping x, secret. Then the trusted
authority forms a pair (name of A,y,) and puts it in the certified public directory.

To generate a common secret key, two users A and B compute ¢”4+*® mod n as yZ* mod n and y%* mod n,
respectively, where yg (resp., ya) is taken from the certified public directory.

It is evident that all the above algorithms run in time polynomial in /.

Remark. Let n be the modulus in the scheme. It is easy to see that z — 22"*™ mod m is a homomor-
phism of Z}, onto H,, for any m € N. Therefore, if 2 €5 Z,, then 22" mod n €r H, provided that
z € Z},, which is true with probability |Z}|/|Zy| > 1/4 and can be verified in polynomial time (e.g., by
the Euclidean algorithm). Hence, there exists a polynomial-time algorithm that, given only n, outputs
g' €r H, with probability at least 1/4. Moreover, we can distinguish between successful an unsuccessful
runs of this algorithm. The probability of success can be increased to 1 by a standard iterating procedure,
but then the algorithm will run only in expected polynomial time. Thus, given only the modulus n, we
can efficiently generate an element having the same distribution as the base ¢ in the described scheme.
This means that the knowledge of g does not help in factoring n.

4. Main Results

In this section, we formulate the main results of this paper. In the following main theorem, n denotes the
product of two arbitrary distinct primes p and ¢. Let also S, T, and ¢ denote some real-valued functions
defined on the set of such n’s, and s denotes an absolute positive constant (in particular, we may take
x = 8/225).



Theorem. Let A be an algorithm that, given n, g, g** mod n, and g2 mod n, where g €x H,, x1 €x Zn,
X2 €g Ly, outputs a list of size at most S(n) such that

Pr{g®**? mod n € 2A(n, g, ¢g"* mod n, g"* mod n)} > &(n),

where the probability is taken over g, x1, T2, and random bits used by A. Assume that the running time
of the algorithm 2 is at most T(n) on any input (n,g,91,92), where g,g1,92 € Zn. Then there exists
an algorithm B that, given n, outputs the set {p,q} with probability at least »ce(n), where the probability
is taken over random bits used by B. The running time of the algorithm B on any input n is at most
pln(logn)(T(n) + S(n)).

The most interesting case of this theorem is when T'(n) < pln(logn) and e(n) > 1/pln(logn). Then,
obviously, S(n) < pln(logn). Hence, if the algorithm 2[ outputs a list of size at most S(n) containing the
desired element g*1*2 mod n with probability at least e(n), then we can find this element with probability
at least £(n)/S(n) > 1/ pln(logn) by choosing an element of the list uniformly at random. Therefore, in
the corollary stated below, we assume that the algorithm 2 outputs the common secret key rather than
the list. Moreover, in this case, we may assume that a breaking algorithm (in the definition stated below)
runs in polynomial time only on a valid public information of the scheme, whereas in the theorem, we
have to suppose that the running time of the algorithm 2l is at most 7'(n) on any input (n, g, g1, g2) with
arbitrary g, 91,92 € Zy,. Indeed, if c[logn]¢, where c,d € N, is an upper bound for the running time of a
breaking algorithm on a valid public information of the scheme, then we can modify this algorithm in such
a way that it counts the made steps and aborts the run when the running time exceeds c[logn]?.

Definition. The above key distribution scheme is insecure if there exists a polynomial-time algorithm
that, given only the public information of the scheme (i.e., n, g, ¢** mod n, ¢ mod n), outputs the
common secret key g*+*® mod n with probability at least 1/ pln(l) for infinitely many I’s. Otherwise the
above scheme is secure.

Corollary. Suppose that the above key distribution scheme is insecure. Then

(1) for any real-valued function p defined on N and such that p(k) < 1 —2"P*) for each k € N, there
ezxists a polynomial-time algorithm B’ that, given n = pq, where {p,q} = & (1(1)), outputs the set
{p, q} with probability at least p(l) for infinitely many 1’s;

(2) there exists an algorithm B" that, given n = pq, where {p,q} = & (1(1)), outputs the set {p, q} with
probability 1 in expected polynomial running time for infinitely many [’s.

In the definition and the corollary, the probabilities are taken over the joint distribution of input data
and random bits used by the algorithms.

Informally speaking, the corollary means that if there are no efficient algorithms for factoring n = pq,
where {p,q} = & (1)), then the above key distribution scheme is secure.

The corollary can be easily derived from the theorem by using a standard iterating procedure.

Let A be an algorithm satisfying the theorem hypotheses. Then the factoring algorithm B is as follows
(n denotes an input number pq, where p and ¢ are distinct primes):

Algorithm 28

1. If n is even, then output the set B(n) = {2,n/2} and successfully terminate. Otherwise, choose
9o €r ZLin, €1 €x {1,3,...,n— 2}, e2 €5 {1,3,... ,n —2}.
2. Fori=0,1,...,[logn] — 1, do stages 2.1-2.3:

2.1. Put g; = g' mod n.

2.2. Run 2 on input (n, gi mod n, g? mod n, gf” mod n) If the algorithm 2 requests the kth
random bit which was not used in its previous calls, then this bit is stored after its generation
for using as the kth random bit not only in the current call, but in all the following ones as
well. In other words, in all its calls, 2 uses the same random binary string to which the new
random bits are appended as needed. Denote the output list of the algorithm 2 on the above
input as {ai1,ai2,. .. ,a;s } (this list may be empty).

2.3. For every j € {1,2,...,s;} such that a;; € Z,, compute p;; = ged(n,a;; — (95*°* mod n)).

3. If we have p;; # 1 and p;; # n for some i € Zpogn), § € {1,2,...,5:}, then output the set

B(n) = {pij,n/pi;} which evidently coincides with {p, ¢}. In this case, the run of B(n) is successful;

otherwise it is unsuccessful.
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It is obvious that the running time of 9B on any input n of the above form is at most pln(logn) x

(T'(n) + S(n)).
5. Auxiliary Lemmas

In this section, we assume that n = pg, where p and ¢ are arbitrary distinct odd primes such that
p—1=2%' and ¢ — 1 = 2°¢', where p' and ¢’ are odd. Then Z is a direct product U x V' x H, where
U = (u) and V = (v) are cyclic subgroups of orders 2* and 27, respectively, and H = H,. Moreover,
w2* ™ mod n, v~ mod n, and v>*” v?°~" mod n are all elements of order 2 in Z*. We assume u and v
to be chosen such that u2* " v?°~ = —1 (mod n).

Let ¢:{x € Z} | ordx is even} — Z denote the function defined as follows. Let x € Z}, ordx = 27d,
where 7 > 1 and d is odd. Then zp = 22"~ mod n. Thus, the order of z¢p modulo H is exactly 2.

For an arbitrary h € H, let X (h) denote the set of all z € Z}, such that

(1) ordz is even;

(2) (z¢)* mod n = h;

(3) —1modn ¢ (z).

Let also p = min{a, §}.
Lemma 1. For any h € H,
4r 4+ 2
3

Proof. Fix h € H. Define a function ¢:U x V — Z7, as follows: yy = yh; mod n, where y is an element
of U x V and hy is the element of H such that h2°"*¥ mod n = h (hy exists and is unique because |H| is
odd).

Let us show that if Y = {abmod n|a € U, b € V, orda # ord b}, then Y = X (h). Let y = ab mod n
(where a € U, b € V) be an element of Y. It is evident that ord(yy) = ordyord h;, where ordy is a
nonzero power of 2 (if ordy = 1, then orda = ordb = 1) and ord h; is odd. Therefore, ord(yy) is even
and (yp)* mod n = (yhy)2°"4¥ mod n = h? °™*¥ mod n = h. Now, suppose that (yi)* = —1 (mod n) for
some k = 26k', where k' is odd. Then we have a* = 2"~ (mod n) and b* = 02! (mod n). This means
that orda | 2k and ordb | 2k, but orda { k and ordb { k. Hence, orda = 25! = ord b (since orda and
ord b are powers of 2), which contradicts the definition of Y. Thus, y% € X (h), and we have proved that
Y C X (h).

Let now x = abhy mod n (where a € U, b € V, hy € H) be an element of X (h). We show that
y =abmodn € Y and ytp = z. Indeed, ordz = ordyord hs, where ordy is a nonzero power of 2 (since
ordz is even) and ord hs is odd. If orda = ord b = 27, then 5 > 1 (since ordy = max{ord a,ord b} = 27)
and

X ()] = 20+ —

on—1 on—1_on—1 ga—1 oB—1
.,EZ ord ha = (az b2 )ordh2 = (uz ,1)2 )ordh2 = (_1)0rdh2 =_1 (mod n)

(here we use the observation that 42*~ mod n and v2°~' mod n are the only elements of order 2 in the
subgroups U and V, respectively). This contradicts the definition of X (h), hence, we have orda # ord b,
i.e., y € V. It is obvious that h3°*¥ mod n = 22°"4% mod n = (2(°4%)/2)* mod n = (z¢)* mod n = h,
therefore, yy = x. Thus, X (h) C Y, and we have Y = X (h). Tt is easily seen that the function 1 is
one-to-one (because the product UV H is direct), therefore, the latter equality implies |Y| = | X (h)].

Let us compute |Y]. It is easy to see that if Cov is a cyclic group of order 2”, then
) 1 if i = 0;
2€Cy |ordz =2} =4 ’

{z€Cor } {21—1 if1<i<uv.

Therefore, we have

[ X(R)|=1Y|=|UxV|-|{(a,b) € U x V| orda = ord b}|

w
=[U|[V|->_|[{a€U|orda=2"}||{beV|ordb=2"}]
i=0
- 4# 42

=20t 12 - %" (2071)2 =20 — —— O
i=1



Lemma 2. For any h € H,
XR)IH] | 2.
n -9

Proof. First we substitute the values of | X (h)| (from Lemma 1), n, and |H| into the left-hand side of the
desired inequality:

X(WIH| _ 2> — (4 +2)/3)p'd _ (2277 — (4" +2)/3) p'¢’

n n 2a+Bp/q/
—D(g-1 48 + 2 1 1
xw= _At2 1I--)(1-=) (@
The inequalities & > p and 3 > p imply a + 3 > 2u and 2277 > 44, Therefore, we have

4¢ + 2 44 42

1_3.2a+,6— 3. 4n

; 2)

where g > 1 and hence, 4* > 4. Since f(t) =1 — (¢t + 2)/(3t) is an increasing function of ¢ for ¢ > 0, we
have

44 + 2 1
- = f(4*) > f(4) = -- 3
T = 1) > f(4) = 3)
The inequalities p > 3 and ¢ > 3 imply
1.2 1.2
1—-=>= d 1-->-=- 4
523 an .23 (4)

Now the lemma follows from (1)—-(4). O

Lemma 3. For any h € H,
[6(r, h)/2]
((n = 1)/2)((6(n, h) +1)/n)

Proof. For brevity, put 6 = §(n,h). It is evident that [t] > t — 1 for each real ¢t. Therefore, we have

2
> Z.
-5

[6/2] (6/2) -1 _n 6-2 )
(n=1)/2)((6+1)/n) ~ (n=1)/2)(0+1)/n) n-15+1

Note that ord h divides |H| = p'q’, hence, we have

(p-1(@-1)

;o
ordh <pq = 20t 5

<

4

Thus, 6 = [n/ordh] > 4. It is easily seen that F(t) = (t — 2)/(¢t + 1) is an increasing function of ¢ for
t > —1, hence, (6 —2)/(6+1) = F(6) > F(4) = 2/5. Moreover, it is obvious that n/(n — 1) > 1. To prove
the lemma, it suffices to substitute these estimates in (5). O

6. Proof of the Main Theorem

Let us define some probability distributions. If a is an element of finite order of a group and n € N, then
we denote the distribution (over the group (a)) of a*, where i €g Zy, as D, ,. It is easy to see that if
k = n mod ord a, then we have

(8(n,a) +1)/n f0<i<k—1;
d(n,a)/n if k<i<(orda)—1.

Prp, , {d'} = { (6)

Similarly to the uniform distribution, the notation b €5, , (a) means that b is a random element of the
group (a) with respect to the distribution D, ,. We assume that each such a random element is selected
independently of others.



For n € N, denote the probability space of all triples (h, hy, h2), where h €5 H,, hy €p, ., (h), ha €p, .,
(h), as Q,,. For an arbitrary (h, h1, h2) € Q,,, we have

PI‘{ (h, h17 h2)} = Pl‘{h} PI‘Dh‘n {h]_} PI‘Dh’n {hQ}, (7)

where Pr{h} = 1/|H,|.

Similarly to [McC], let DH (n, h, h1, h2) = h**®> mod n, where n € N, h € Z%, hy = h** mod n € (h),
and he = h® mod n € (h). It is evident that DH is a well-defined function. The task of an adversary in the
above key distribution scheme (see Sec. 3) is to compute DH (n,w), given n = pq, where {p,q} = & (l(l)),
and a random element w of the space (2,,.

Let 2 be an algorithm satisfying the theorem hypotheses and 8 the algorithm constructed from 2 as
in Sec. 4. Since the probability of success of B on any even valid input n is 1 > »z(n), here and below
we assume that n is the product of two distinct odd primes p and q. For convenience, we sometimes write
random binary strings used by algorithms as a part of their input data. For a given n, we may assume
that the algorithm 2 uses random string r €5 {0,1}7(") and the algorithm % uses random parameters
90 €r Zn, €1 €x {1,3,...,n—2}, €2 €x {1,3,... ,n—2}, and r €, {0,1}7(™) (recall that A uses the same
random string in all its calls from B).

Let M, be the set of all (w,r) € 2, x {0,1}7(™ such that the run of 2 on the input (n,w) using the
random string r is successful, i.e.,

M, = {(w,r) € Q, x {0, 1}T(")

DH(n,w) € A(n,w, r)}

*

Lemma 4. The run of B(n,go,e1,e2,7) is successful if go € Z}, ord gy is even, —1 mod n ¢ (go), and
((g90)* mod n, (goy)?** mod n, (goy)?2 mod n,r) € M, (see notation in Sec. 5).

Proof. For brevity, denote gow by f. Then we have f = g; for some i € Z[qz,), hence, the list
{a;1, a2, ... ,ais; } computed at stage 2.2 of the algorithm 9B contains

aij = DH (n, f* mod n, f*** mod n, f*** mod n) = fAm®erez yod p,

where m is a number such that f*™ = f? (mod n) (recall that f* € H, (see Sec. 5), therefore, {f* mod
n) = (f?> mod n)). Note that f8m" = (f4m)2m = (f2)2m = f4m = {2 (mod n), hence, we have
az?j = f8m2€162 = f261€2 = (f€1€2)2 (mod TL)

This means that

(aij — (f°*°* mod n))(a;; + (f*** mod n)) =0 (mod n). (8)
Suppose that a;; —(f€1°> mod n) is divisible neither by p nor ¢. In this case, a;; —(f¢*®> mod n) is coprime to
n, and (8) implies a;; + (f¢*2 mod n) =0 (mod n). But then —1 mod n = az._jlfel‘32 mod n € (f) C (go),
which contradicts the hypothesis. If a;; — (f°*®> mod n) is divisible both by p and ¢, then we have
f‘“’126162 modn = a;; = f°**2 modn. But f‘””%162 modn € H, and f®°> modn ¢ H, since f has

order 2 modulo Hy, (see Sec. 5) and ejey is odd. Therefore, a;; — (f¢1* mod n) is divisible by exactly one
prime factor of n. This implies p;; # 1 and p;; # n, i.e., the run of B(n, go, €1, e2,7) is successful. O

Proof of the Theorem. From the theorem hypotheses and (7), we obtain

e(n) <PrM, = Z Pr{(h, h1, h2,7)}
(h,h1,h2,7‘)€Mn

- 3 Pr{(h, h1, h2)} Pr{r}

(h,h1,h2,m)EMn

1 1
_ E: ] Prona {1} Pro,  {ha} oz

(h,hl ,hg,T) eM,

1
- m Z PrDh,n{hl}PrDh)n{hQ}. (9)
" (B,hi,ho,r) € Mn
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For an arbitrary m = (h, hy, ha,r) € M, let us define the set Z,,, as the set of all quadruples (go, €1, €2,7)
such that

(1) g0 € X(h);

(2) €1,es € {1,3,... ,n—2};

(3) (W)** = hy (mod n), (W) = hy (mod n), where h' € H, is such that (h')? = h (mod n) (b’
exists and is unique because |H,| is odd).

Let a be an element of odd order of some group and b = a* € (a), where k € Zyq,. Then the parities
of numbers in the sequence k,k + orda,k + 2orda,... ,k + (6(n,a) — 1) ord a, in which all elements are
distinct and belong to {t € Z,|a’ = b}, alternate. Hence, we have

{te{1,3,...n—2}|a' =b}| > [(5(73_,&)]

The latter inequality implies that for any m = (h, h1, ha,7) € M,

7 2 001 [25] < ey [ 21

where h' € H,, is such that (h')2 = h (mod n), as above. Note that for each m = (h, hy, ho,r) € M,, and
each (go,e1,€2,7) € Zy,, ord go is even, —1 mod n ¢ {(go) (since go € X (h)) and

h = (9090)4 mod n,

hy = (g0%)
ha = (go)?*? mod n

2eq

mod 7,

(since h' = (gow)? mod n). Therefore, by Lemma 4, the run of B(n, go, e1, e, r) is successful. Moreover,
Zmy N Zmy = 0 for my # ma (my1,ma € M,) because m can be recovered uniquely from an arbitrary
element of Z,,.

Let us estimate the probability of success of the run of B(n, go, €1, €2,7):

U 7
meM,

i >
Pr{the run of B(n, go, e1, ea,r) is successful} > n((n — 1)/2)227®

1
_ 29T (n) Z | Z (b ha,r)
n((n 1)/2) 2 (h,h1,h2,r)EM,

T ), X0 [@]

(h,h1,h2,7)EMn

__ 1 (X (W[ Hq| [0(n, h)/2]?
[ Hn[ 2T Z no ((n=1)/2)?Prp, {h}Prp, {ho}

(h,h1,h2,T)€Mn
x Prp, {h1}Prp, {h2} (notethat Prp, {h1},Prp, {ha}>d(n,h)/n >0 by (6))

1 | X (W[ Hx| [0(n, h)/2] ’
| Hy| 27 Z ( n )(((n—1)/2)((5(n,h)+1)/n))

(h,h1,h2,7’)€Mn
X Prp, {h1}Prp, {h2} (since Prp,  {h1},Prp,  {h2} < (6(n,h)+1)/n by (6))

8 1
ﬁm Z Prp, {m}Prp, {h2} (by Lemmas 2, 3)
n (h,h1,he,m)EM,

(n) (by (9)). O

vV

8,
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